Monday, 13 March 2017

Linux Tutorial : Tips Choosing an Operating System



You have learned that Linux is a UNIX-like operating system, which means that it has not undergone formal certification and therefore can’t use the official UNIX trademark. There are many other alternatives; some are UNIX-like and some are certified as UNIX. There are also non-Unix operating systems such as Microsoft Windows.
The most important question to ask when determining the configuration of a machine is “what will this machine do?” If you need to run specialized software that only runs on Oracle Solaris, then that’s what you’ll need. If you need to be able to read and write Microsoft Office documents, then you’ll either need Windows or something capable of running LibreOffice or OpenOffice.

Decision Points

The first thing you need to decide is the machine’s role. Will you be sitting at the console running productivity applications or web browsing? If so, you have a desktop. Will the machine be used as a Web server or otherwise sitting in a server rack somewhere? You’re looking at a server.
Servers usually sit in a rack and share a keyboard and monitor with many other computers, since console access is only used to set up and troubleshoot the server. The server will run in non-graphical mode, which frees up resources for the real purpose of the computer. A desktop will primarily run a GUI.
Next, determine the functions of the machine. Is there specific software it needs to run, or specific functions it needs to do? Do you need to be able to manage hundreds or thousands of these machines at the same time? What is the skill set of the team managing the computer and software?
You must also determine the lifetime and risk tolerance of the server. Operating systems and software upgrades come on a periodic basis, called the release cycle. Software vendors will only support older versions of software for a certain period of time before not offering any updates, which is called the maintenance cycle (or life cycle). For example, major Fedora Linux releases come out approximately every 6 months. Versions are considered End of Life (EOL) after 2 major versions plus one month, so you have between 7 and 13 months after installing Fedora before you need to upgrade. Contrast this with the commercial server variant, Red Hat Enterprise Linux, and you can go up to 13 years before needing to upgrade.
The maintenance and release cycles are important because in an enterprise server environment it is time consuming, and therefore rare, to do a major upgrade on a server. Instead, the server itself is replaced when there are major upgrades or replacements to the application that necessitate an operating system upgrade. Similarly, a slow release cycle is important because applications often target the current version of the operating system and you want to avoid the overhead of upgrading servers and operating systems constantly to keep up. There is a fair amount of work involved in upgrading a server, and the server role often has many customizations made that are difficult to port to a new server. This necessitates much more testing than if only the application were upgraded.
If you are doing software development or traditional desktop work, you often want the latest software. Newer software has improvements in both functionality and appearance, which contributes to more enjoyment from the use of the computer. A desktop often stores its work on a remote server, so the desktop can be wiped clean and the newer operating system put on with little interruption.
Individual software releases can be characterized as beta or stable. One of the great things about being an open source developer is that you can release your new software and quickly get feedback from users. If a software release is in a state that it has many new features that have not been rigorously tested, it is typically referred to as beta. After those features have been tested in the field, the software moves to a stable point. If you need the latest features, then you are looking for a distribution that has a quick release cycle and makes it easy to use beta software. On the server side, you want stable software unless those new features are necessary and you don’t mind running code that has not been thoroughly tested.
Another loosely related concept is backward compatibility. This refers to the ability for a later operating system to be compatible with software made for earlier versions. This is usually a concern if you need to upgrade your operating system, but aren’t in a position to upgrade your application software.
Of course, cost is always a factor. Linux itself might be free, but you may need to pay for support, depending on which options you choose. Microsoft has server license costs and may have additional support costs over the lifetime of the server. Your chosen operating system might only run on a particular selection of hardware, which further affects the cost.

Microsoft Windows

The Microsoft world splits the operating systems according to the machine’s purpose: desktop or server? The Windows desktop edition has undergone various naming schemes with the current version (as of this writing) being simply Windows 8. New versions of the desktop come out every 3-5 years and tend to be supported for many years. Backward compatibility is also a priority for Microsoft, even going so far as to bundle virtual machine technology so that users can run older software.
In the server realm, there is Windows Server, currently (at this writing) at version 2012 to denote the release date. The server runs a GUI, but largely as a competitive response to Linux, has made amazing strides in command line scripting abilities through PowerShell. You can also make the server look like a desktop with the optional Desktop Experience package.

Apple OS X

Apple makes the OS X operating system, which has undergone UNIX certification. OS X is partially based on software from the FreeBSD project.
At the moment, OS X is primarily a desktop operating system but there are optional packages that help with management of network services that allow many OS X desktops to collaborate, such as to share files or have a network login.
OS X on the desktop is usually a personal decision as many find the system easier to use. The growing popularity of OS X has ensured healthy support from software vendors. OS X is also quite popular in the creative industries such as video production. This is one area where the applications drive the operating system decision, and therefore the hardware choice since OS X runs on Apple hardware.

BSD

There are several open source BSD (Berkely Software Distribution) projects, such as OpenBSD, FreeBSD, and NetBSD. These are alternatives to Linux in many respects as they use a large amount of common software. BSDs are typically implemented in the server role, though there are also variants such as GNOME and KDE that were developed for desktop roles.

Other Commercial UNIXes

Some of the more popular commercial UNIXes are:
  • Oracle Solaris
  • IBM AIX
  • HP-UX
Each of these runs on hardware from their respective creators. The hardware is usually large and powerful, offering such features as hot-swap CPU and memory, or integration with legacy mainframe systems also offered by the vendor.
Unless the software requires the specific hardware or the needs of the application require some of the redundancy built into the hardware, most people tend to choose these options because they are already users of the company's products. For example, IBM AIX runs on a wide variety of IBM hardware and can share hardware with mainframes. Thus, you find AIX in companies that already have a large IBM footprint, or that make use of IBM software like WebSphere. 

Linux

One aspect where Linux is much different than the alternatives is that after an administrator has chosen Linux they still have to choose a distribution. Recall from Topic 1 that the distribution packages the Linux kernel, utilities, and management tools into an installable package and provides a way to install and update packages after the initial installation.
Some operating systems are available through only one vendor, such as OS X and Windows, with system support provided through the vendor. With Linux, there are multiple options, from commercial offerings for the server or desktop, to custom distributions made to turn an old computer into a network firewall.
Often application vendors will choose a subset of distributions to support. Different distributions have different versions of key libraries and it is difficult for a company to support all these different versions.
Governments and large enterprises may also limit their choices to distributions that offer commercial support. This is common in larger companies where paying for another tier of support is better than risking extensive outages.
Various distributions also have release cycles, sometimes as often as every six months. While upgrades are not required, each version can only be supported for a reasonable length of time. Therefore, some Linux releases are considered to have long term support (LTS) of 5 years or more while others will only be supported for two years or less.
Some distributions differentiate between stable, testing, and unstable releases. The difference being that unstable releases trade reliability for features. When features have been integrated into the system for a long time, and many of the bugs and issues addressed, the software moves through testing into the stable release. The Debian distribution warns users about the pitfalls of using the “sid” release with the following warning:
  1. ‘"sid" is subject to massive changes and in-place library updates. This can result in a very "unstable" system which contains packages that cannot be installed due to missing libraries, dependencies that cannot be fulfilled etc. Use it at your own risk!’
Other releases depend on Beta distributions. For instance, the Fedora distribution releases Beta or pre-releases of its software ahead of the full release to minimize bugs. Fedora is often considered the community oriented Beta release of RedHat. Features are added and changed in the Fedora release before finding their way into the Enterprise ready RedHat distribution.

Android

Android, sponsored by Google, is the world’s most popular Linux distribution. It is fundamentally different from its counterparts. Linux is a kernel, and many of the commands that will be covered in this course are actually part of the GNU (GNU's Not Unix) package. That is why some people insist on using the term GNU/Linux instead of Linux alone.
Android uses the Dalvik virtual machine with Linux, providing a robust platform for mobile devices such as phones and tablets. However, lacking the traditional packages that are often distributed with Linux (such as GNU and Xorg), Android is generally incompatible with desktop Linux distributions.
This incompatibility means that a RedHat or Ubuntu user can not download software from the Google Play store. Likewise, a terminal emulator in Android lacks many of the commands of its Linux counterparts. It is possible, however, to use BusyBox with Android to enable most commands to work.

(modul 1.2)







Load disqus comments

0 comments